

1. Write 0,000 315 in standard form.

2. (a) Write 0.0234 in standard form.

(c) Calculate, giving your answer in standard form

Show your working clearly.
$$\frac{2.5}{5} \times \frac{10^{-98}}{10^{-98}}$$
0.5 x 10

3.
$$N = \frac{1025 \times 623}{254 \times 58^3}$$

Evaluate N, giving your answer

(a) To 3 significant figures,

0.0128

(b) To 6 decimal places.

4. (a) Write 1.2 \times 10 $^{-4}$ as an ordinary number.

0.00012

(b) Calculate
$$\frac{6 \times 10^{144} + 5 \times 10^{142}}{5 \times 10^5}$$

Give your answer in standard form.

$$\frac{605 \times 10^{142}}{5 \times 10^{5}}$$

$$\frac{605}{5} \times \frac{10^{142}}{10^{5}}$$

$$121 \times 10^{137}$$

$$1.21 \times 10^{139}$$

The Maths Society

5. The table gives the area, in ${\it km}^2$, and the population of each of three countries in 2017

Country	Area (km²)	Population 5.617 × 10 ⁴
Greenland	2.166 × 10 ⁶	
Sri Lanka	6.561 × 10 ⁴	2.144×10^{7}
China	9.597 × 10 ⁶	1.368 × 109

- (a) Write 5.617 \times 10⁴ as an ordinary number. **56170**
- (b) Calculate by how many people the population of China in 2017 was greater than the population of Sri Lanka in 2017

 (1.368 x 10 9) (2.144 x 10 9)

Give your answer in standard form. 1.34656,x 109

(c) Work out the number of people per km^2 for Greenland in 2017

Give your answer, to 3 significant figures, in standard form.

$$\frac{2.166 \times 10^{6}}{5.617 \times 10^{4}}$$

$$0.385 \times \frac{10^{6}}{10^{2}} = 38.5$$

$$3.85 \times 10$$

6. (a) Write 248 000 000 in standard form.

(b) Write 2.56×10^{-4} as an ordinary number.

(c) Calculate, giving your answer in standard form

$$\frac{2.5 \times 10^{60} - 1.3 \times 10^{59}}{1.5 \times 10^{-48}}$$

$$\frac{2.37 \times 10^{60}}{1.5 \times 10^{-48}}$$

$$\frac{2.37 \times 10^{60}}{1.5 \times 10^{-48}}$$

$$\frac{2.37 \times 10^{60}}{1.5 \times 10^{-48}}$$

7. Calculate the value of $\frac{2.89}{12.3-9.91}$

Give your answer as a decimal to 5 significant figures.

Change 4.5×10^{14} microseconds into hours. Give your answer in standard form.

$$10^{6}_{MS} = 1.8$$

$$1mS = \frac{1}{10^{6}}.S$$

$$4.5 \times 10^{14} mS = \frac{4.50 \times 10^{8}}{60 \times 60}$$

$$125 000 hours$$

$$1.25 \times 10^{5}$$

9. The GDP per capita for a region is defined as follows

GDP per capita=
$$\frac{total\ GDP}{population}$$

Complete the table below, giving each value to 2 significant figures.

Region	Total GDP	Population	GDP per capita
Grenada	1.23×10°	112 000	10 000
Hungary	1.61×10 ¹¹	9700 000	16500
World	8.7 × 10 13	7.67×10°	11 400

10. Calculate $(4.2 \times 10^{72}) \times (5.5 \times 10^{75})$

Give your answer in standard form.

11.(a) Write 76 000 000 in standard form.

(b) Write 8.3×10^{-4} as an ordinary number.

0.00083
(c) Calculate
$$(3 \times 10^{147}) \div (6 \times 10^{122})$$
 $\frac{3 \times 10^{147}}{6 \times 10^{122}} = 0.5 \times 10^{26}$

Give your answer in standard form.

(d) Write 1.6 \times 10⁴¹ as a product of its prime factors.

Show your working clearly.